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Abstract 

The study of the effect of round-off in Horner's scheme 

leads to the problem of estimating the absolute values of 

the so-called Horner sums. In this report the problem is 

solved under the condition that the polynomial is either 

an odd or an even function and that its maximum -norm does 

not exceed the value one. Except for a few specifi- cases,. 

the Chebyshev-polynomials then turn out to be the maximizing 

polynomials. 
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1. Introduction 

In an earlier paper, Reimer and Zeller [l] proved the fol- 

lowing maximum property for the Chebyshev-polynomials C : 
n 

Consider all real polynomials 
n P(x) = a +- a x +- --+ a x 

0 1 n (1.1 

( 1 . 3 )  
even even P is {odd } if n is {odd }. 

Among these polynomials, C is a polynomial maximizing the absolute 

value of each partial sum 

Si(P) = a + a +--+ a (0 5 i - < n), 
0 1 i (1.4) 

or, equivalently, the polynomial 
i a + a x +---+ a x 

0 1 i 
has a maximal Chebyshev-norm if P = C . n 

The study of the effect of round-off-errors in Horner's scheme 

leads to the problem of estimating the absolute values of the 

Horner sums 

+--- + a (1 < i < n). - - (1.5) i i+l n H~(P) = a + a 

If P satisfies the condition (1.3),a crude partial solution for 

this problem can be obtained as follows (see [2]) : The trivial 
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r e l a t i o n  

(1.6) ‘i-1 (P) + Hi(P)  = P ( 1 )  

implies t h a t  

(1.7) I Hi (PI 

(1.8) I Hi (PI 

Hence, s ince  the 

(1 i e - n) 

(C ) have a l t e r n a t i n g  s igns ,  t he  es t imate  ‘i-1 n 

is ev iden t ly  b e s t  poss ib l e  i n  ha l f  of a l l  the cases .  We s h a l l  

prove he re  t h a t  there  a re  only few exceptions for which (1.8) i s  

not  va l id .  
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2. Lemmas 

L e t  K be a p o s i t i v e  i n t e g e r ,  r one of the numbers 0 and 1, and 

n = 2k + r .  

I f  P i s  a real  polynomial of degree n s a t i s f y i n g  (1.3) 

then n e c e s s a r i l y  
r 2 

(2.1) P(X) = x . p ( x  # 

where p i s  a polynomial of degree k. I n  p a r t i c u l a r  t h e r e f o r e  

(2.1.1) r 2 
Cn(X)  = x 0 c ( x  ) .  

W e  in t roduce  t h e  polynomials 

( 2 . 2 )  uv (x) = x (x-1) ( v  = O , l , .  . . ,k) 

a s  a b a s i s  f o r  t h e  space of a l l  polynomials of degree k. 

V k -V 

Then 

(2.3) 

v =o 
and a s  shown i n  [ 23 . t he  condition (1.2) 

impl ies  t h a t  
2k+r 

I A V I  5 G,,3 
where p i s  assumed t o  have t h e  representa t ion  

1 (2.4)'  A U .  
v v  P =  

V = O  

However, (1 .2)  involves  one  more r e s t r i c t i o n  on t h e  A 
V .  

Lemma 1. 

L e t  % = 1 and assume t h a t  t h e  polynomial (2.4) has  k zeros  i n  _ _  

1 t h e  i n t e r v a l  ( 0 , l ) .  Then each A (0 5 v 5 k-1) i s  a nonnegative 

and s t r i c t l y  inc reas ing  funct ion of each of t h e  zeros wi th in  t h i s  
V 

I i n t e r v a l .  

Proof. Consider t h e  mapping 
Mcwy 

1 (2.4) 
X z 

=- , x = - 0  x-1 2-1 



k I f  xl, X2,-.., 5 a r e  the zeros  of p i n  (0 ,  1) and z z 2 # .  . . , z 1' 
their  images under z ,  then 

v=P v-0 

- < z < 0 (V  = 1, 2, ..., k). 
V 

Since  z i s  on (0,  1) a s t r i c t l y  decreasing func t ion  of x, the  

s ta tement  of Lemma 1 is  now evident.  

Lemma 2 .  

L e t  x and y ( v  = X , .  . . ,k)  denote t h e  zeros  of t h e  non-zero 

polynomials 
v V 

k e BvUvO 
p = c  A u  a n d q =  

v v  
v=o v=o 

and suppose these zeros  have b e e n  arranged a s  follows: 

Then 

( 2 . 6 )  ---- v >  v > o  ( V  = 0 ,  1, .. . , k - l ) .  
A B 

4, $: 0,  B x 1, y1 1 impl ies  tha t  Proof. 

(2.6) fol lows d i r e c t l y  from Lemma 1. 

$z 0 and t h e r e f o r e  
k 1 MIVW 

1 
W e  s h a l l  now s p e c i a l i z e  t h e  y of Lemma 2 t o  

YJT ( v  = 0 ,  1, ..., k ) :  
V 

yv = cos - n (2.7) 

then (2 .5 .1)  holds .  I n  t h i s  case,  t h e  polynomial q of Lemma 2 

can be def ined  a s  follows: 

C a s e  1. r = 0 .  

and s i n c e  y = 0 ,  we a r e  led  t o  the  r e l a t i o n  

1 
Since  y 1'"' Y k - l  a r e  extreme p o i n t s  of c ( x )  

k 
I 
I q(x)  = -*x -c ' (x ) "  1 

k 
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U Together with (2.2) 8 (2.3) t h i s  r e s u l t s  i n  

I 
v = l  

8 . .  . #yk are contained i n  (0, 1) y1 
Case 2, r = 1. I n  t h i s  case,  

and a r e  extreme p o i n t s  of the funct ion 

1 
Thus 

i s  a polynomial of degree k with yl, . . . ,y 

Using again ( 2 . 2 ) ,  (2.3) we obtain t h e r e f o r e  

a s  i t s  zeros.  k 

I 
1 

(2 .8.2)  

v=o 

3. The  Main Theorem 

L e t  P be a polynomial of t h e  form ( l . i j  -1sfying t h e  condi t ions  I 
(1 .2)  and (1.3) and 1 e t . p  be defined by .(2.1). Obviously, we 

have then  

a Si(P) =- S2i+r (PI 8 

Hi(p) = H2i+r (PI 
(3.1) 

I and it can  be v e r i f i e d  e a s i l y  t h a t  

(i = 0, lt...,k) 

s . ( u  1 = 0 (0 5 i < v - e k ) ,  

k + i  (-1) s .  (u 1 1 (0 - -  < v i < k ) .  

1 v  
(3 .2)  I 

I 1 v  

For t h e  moment l e t  us suppose t h a t  

(1 .2 .1 )  II p II < 1- 

Then each of t h e  polynomials Cn + P and C 

each p a i r  of successive extreme p o i n t s  of C . Passing over t o  c 

and p we see t h a t  each of t h e  polynomials c+p and c-p s a t i s f i e s  

- P h a s  a zero between n 

n 
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t h e  condi t ions  placed upon p i n  Lemma 2 provided t h a t  g is 
defined by (2.8.1)  and ( 2 . 8 . 2 ) ,  r e spec t ive ly .  This remains 

t r u e  even i f  we  rep lace  (1.2.1) by t h e  o r i g i n a l  condi t ion  (1 .2)  

provided w e  add t h e  assumption t h a t  

( 3 . 3 )  p ( 1 )  + 2 1- 
L e t  

I k 
W = E A  v v  U 

v=o 

be one of t h e  polynomials c+p and c-p; then 8 
\ = w ( 1 )  = 1 f p ( 1 )  > 0 .  

From (1.6) and (3.2)  it follows t h a t  I 
i-1 

k + i  k+ i (uv) I (1 < i < k ) .  (3.4) (-1) H i ( W )  = (-1) A,, + 1 A v 1s i-1 - - 
v =o 

Using 4, > 0 ,  

be,  t oge the r  with Lemma 2 we obtain from .(3.4) t h e  estimate 

(3.2) and (2.8.1) o r  ( 2 . 8 . 2 ) ,  whatever t he  case  may I 
(1 < i k). - - 

7 .  

(3.5) (-1) hTLHi (w) 1- 4, (-1) + Ktl 

v =c 
I Suppose now t h a t  one of t h e  following condi t ions  holds:  

(1 < i k). - - 
7 :  

(3.5) (-1) hTLHi (w) 1- 4, (-1) + Ktl 

v =c .~ 

I Suppose now t h a t  one of t h e  following condi t ions  holds:  

1 C i < k,  i k mod 2: 

(3 .6 .2 )  2 C i c k ,  - - i + k m o d 2 .  

Then, f o r  bo th  of t h e  two poss ib l e  choices  of w, t he  right-hand- 

s i d e  of (3 .5)  i s  nonnegative and it follows t h a t  

(3.6.1) - - 

I > 
[H.  1 ( C ) l 2  - [Hi(p)I2 = Hi(c+p). Hi(c-p) (=)O 

where t h e  e q u a l i t y  s ign  occurs a t  best when 

(3.7) i = 2, k = 1 mod 2,  r = 0 ,  

Because of ( 3 . 1 )  t h i s  f i n a l l y  leads t o  t h e  estimate 

( 3 . 8 )  I HZ i+r (PI 1 i<=i I H ~ ~ + ~  (cn).I 
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Let us now drop the conditon (3.3), i.e. let us assume that 

P ( 1 )  = f 1 

(for the following we select a fixed sign). 

then remains valid and more precisely 
By continuity (3.6) 

(3.9) 
k+i > 

(-1) Hi(c*p) (=)O 

holds under the same conditons as above. However, if 

w = c T p then 9, = 0. Assume that 

then it is a well-known fact (Markoff's inequality) that 

This implies that x = 1 is a simple root of C,TP and likew ->e 
_ _  

of c?p. However, we have 

= w'(1) > 0 %-1 
and w satisfied the condition (2.5.2) for p in Lemma 2 if 

equality is permitted also in the rightmost inequality. Conse- 

quently zero is at best a simple root. Using again mapping (2 .4)  

k-1 
g JJescar= -e A z z we find es- rule to A P 8 

that 

A > O , A v > o  ( W  = P, 2, ..., k-1) 
0 -  

and hence (3.4) implies that 

(3.10) (-1) Hi(c p) > 0 ( 2  5 i - < k). I 
Therefore (3.8) is obtained from (3.9), (3.10) and again without 

the equality sign in the case 

2 < i - < k; i 2 if r ='O and k 2 1 mod 2; P f 5 c . 
n (3.11) - 

Finally we observe the self-evident fact that ( 3 . 8 )  is valid for 

(3.6.3) ' i = 0 ,  k >  - 1. 
Moreover, the cases covered by (3.6.1), (3.6.2) and (3.6.3) are 

obviously exactly those excluded by the condition 

I 
I 
I 
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E: 1 = 1; r = 0 o r  I; k = 2 ,  4, 6,--- 

Altogether  we  have the re fo re  obtained t h e  following r e s u l t :  

Theorem. - 
+--- n n-2 n-4 P(x)  = a x + a X + a  X n n-2 . n-4 L e t  

be a r e a l  polynomial s a t i s f y i n g  

L e t  +--- n-2 n -4 
X + c y  X 

f J  

a n - 2  n -4 
Cn(X)  = o! x n 

be the  Chebyshev-polynomial of degree n. Then 

(3.12) < 
+ a  + - + a  n I ( = ) I c y  V + a  +---+ cy n I ' av v+2 v + 2  

i s  v a l i d  f o r  

O < v < n ,  - - v ~ n m o d 2  

except  i n  the  following cases 

v = 3; n = 5, 9, 13,---. El : 

I t  i n  (3.12) e q u a l i t y  holds  and i f  one of t h e  fol lowing condi t ions  

i s  s a t i s f i e d  

v 6 ;  n = 6, 10 ,  1 4 1 - - - a  

(3.13) v > - 4;  n = 4,  8, 12,---, 

v - > 5;  n = 5, 7 ,  9,--- 

then 

P = f cn. 

Proof. The s ta tements  of t h e  theorem a r e  se l f - ev iden t  i n  t h e  

case  n = 0 and n = 1, If n 2 2 se t  v = 2 i  + r and r e c a l l  t he  

meaning of H ( P ) .  The exceptions E and E correspond t o  E f o r  

r = 0 and r = 1, respec t ive ly ,  and ( 3 . 1 2 )  i s  i d e n t i c a l  t o  (3.8) 

F i n a l l y ,  (3.13) i s  a dqcomposed vers ion  of (3.11)- Thus t h e  

theorem has  been proved i n  i t s  e n t i r e t y .  

-- I 
1 
8 

v 0 1 

Note t h a t  t h e  r e s u l t  does n o t  apply i n  t h e  except iona l  cases 
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E and El. I n  f a c t ,  t h e  example 
0 

P ( X )  = C6 (X) - K * x  C ~ ( X )  

shows t h a t  when (3.13) i s  v io l a t ed  t h e  e q u a l i t y  i n  (3.12) does 

no t  imply t h a t  P = f C . 
I n  t h i s  case  t h e  assumptions about P made i n  t h e  theorem are 

s a t i s i f i e d  f o r  some i n t e r v a l  

n 

0 - < K < KO. 

Y e t ,  because of 

6 4 2 x * C '  (x) = 192 x - 192 x + 36 x , 6 
w e  have 

)34(') = H4(C6) 

f o r  any choice of K, 

4.  Exceptional Cases. 

W e  s h a l l  now d i scuss  the  s i t u a t i o n  when one of t h e  condi t ions  

E and E, app l i e s .  

E- .  Because of 

- 

1 
0 - 

H 2 ( P )  = P(1) - P(0)  

( 1 . 2 )  impl ies  t h a t  

(4.1) \ H 2 ( P )  I 5 2 (n  = 4, 8, 12,---). I 
The example P = C then demonstrates t h a t  t h e  bound i n  (4.1) i s  

best poss ib l e .  However, s i n c e  C (1) = Cn(0) ,  t h i s  bound i s  n o t  
2 

n 
a t t a i n e d  f o r ' P  = C . 

El. 

n 

Assume f o r  t he  moment t h a t  
I 
I 

Since C ( A )  a t t a i n s  each value between -1 and +1 wi th in  t h e  n: 8 i n t e r v a l  

(4.3) cos 3 c x c 1, n 8 . w e  can choose an s i n  t h i s  i n t e r v a l  such t h a t  



1- 
D 
I 
8 
I 
I 
I 
8 
I 
I 

- 10 - 

Then cn(sx) - P(x)  is an odd polynomial with exac t ly  k p o s i t i v e  

roots between 1 and the smallest p o s i t i v e  extreme p o i n t  of C (sx) .  

This implies  t ha t  

n 

because otherwise an add i t iona l  ze ro  of c (sx) - P ( X )  could be n 

found i n  (0,  1). Thus 
. 

P' (0) - P ( 1 )  < s c; (0) - c n ( s ) -  

Since -P s a t i s f i e s  t h e  same condi t ions as P t h e r e  i s  another  
number t i n  t h e  i n t e r v a l  (4.3) with 

I 
n - P ' ( O )  + P ( 1 )  < t c (0)  - c p .  

Now 

P ( 1 )  - P' (0) = a3 + a +---+ a = H3(p), 5 n 

and t h u s  

holds ,  even i f  w e  admit ( 1 . 2 )  ins tead  of the condi t ion ( 4 . 2 ) .  The 

maximum on t h e  r i g h t  can be determined by elementary means; it i s  

assumed only a t  h, = cos-. Therefore 

(4.4) 

and the bound i s  a t t a i n e d  by 

ll 

I 
I 
I 

n 

J H ~ ( P )  I < 1 + n co< (n = 5, 9, 13,---), - 

I ll 
p(x)  = f c (x.. cos-). n n 

I 
I 
I 
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